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Grey Filtering and Its Application to Speech Enhancement

SUMMARY In this paper, a grey filtering approach based on
GM(1,1) model is proposed. Then the grey filtering is applied to
speech enhancement. The fundamental idea in the proposed grey
filtering is to relate estimation error of GM(1,1) model to additive
noise. The simulation results indicate that the additive noise can
be estimated accurately by the proposed grey filtering approach
with an appropriate scaling factor. Note that the spectral sub-
traction approach to speech enhancement is heavily dependent on
the accuracy of statistics of additive noise and that the grey filter-
ing is able to estimate additive noise appropriately. A magnitude
spectral subtraction (MSS) approach for speech enhancement is
proposed where the mechanism to determine the non-speech and
speech portions is not required. Two examples are provided to
justify the proposed MSS approach based on grey filtering. The
simulation results show that the objective of speech enhancement
has been achieved by the proposed MSS approach. Besides, the
proposed MSS approach is compared with HFR-based approach
in [4] and ZP approach in [5]. Simulation results indicate that in
most of cases HFR-based and ZP approaches outperform the pro-
posed MSS approach in SN R;p,,,. However, the proposed MSS
approach has better subjective listening quality than HFR-based
and ZP approaches..

key words: grey filtering, GM(1,1) model, additive noise, esti-
mation error, speech enhancement, spectral subtraction

1. Introduction

The purpose of filtering is to recover signal compo-
nent from noisy observations [1]. Filtering is required
in many engineering applications. One example is the
speech enhancement. Assume that the signal model
is the additive signal model, which is expressed as
z(k) = s(k) + n(k) where z(k), s(k), and n(k) are
noisy speech, clean speech, and the additive noise, re-
spectively. The objective of speech enhancement is to
recover s(k) from noisy speech x(k). Note that filter-
ing s(k) out of z(k) is equivalent to the estimation of
additive noise n(k). Therefore better performance of
speech enhancement results from appropriate noise es-
timation. Basically, the speech enhancement consists of
two stages: noise estimation and noise removal. Up to
present, several noise estimation approaches have been
reported. Some of representative approaches are as fol-
lows. By a mechanism to determine non-speech and
speech portions in z(k), additive noise is estimated dur-
ing non-speech period in [2]. Note that the spectrum
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above speech frequency component comes from n(k)
if it is white noise. In [3], the spectral component of
white noise is estimated through linear prediction coef-
ficients while higher sampling rate is used for spectral
estimation of n(k) in [4]. By signal insertion in the
transmitted speech signal, in [5] the contaminated in-
serted signals are used to estimate noise. Since additive
noise is random, it is appropriate to deal with n(k) in a
statistical way. Therefore, statistics of n(k) is sufficient
in many practical applications of speech enhancement.
When statistics of noise are estimated, a noise removal
technique is applied. The noise removal approach can
be Weiner filtering as in [2], Kalman filtering as in [3],
or a popular approach called spectral subtraction as in
[4] and [5].

In this paper, we proposed a grey filtering ap-
proach based on GM(1,1) model [6] which stands for
the first-order grey model with one variable. Then the
proposed grey filtering approach is applied to speech en-
hancement whose noise removal technique is based on
magnitude spectral subtraction (MSS)[7]. This paper
is motivated by the following observations. The esti-
mation error of GM(1,1) model is zero for a constant
signal and approximately zero for random signal when
additive noise is absent. When additive noise is present,
both signals have non-zero estimation error. These re-
sults will be shown in Sect.2.2. By the observations,
it implies that estimation error of GM(1,1) model can
be related to additive noise. Furthermore, the speech
signal generally consists of two parts: non-speech and
speech. The non-speech portion can be considered as
constant signal while speech portion as random signal.
Consequently, there is a hope to estimate additive noise
in noisy speech through estimation error of GM(1,1)
model and therefore speech enhancement by spectral
subtraction may be possible.

This paper is organized as follows. In Sect.2, a
brief review of GM(1,1) model [6] is given and grey fil-
tering or noise estimation based on GM(1,1) model is
described and demonstrated as well. In Sect.3, the
application of grey filtering to MSS[7] for speech en-
hancement is proposed and described. Then simula-
tion results are provided to justify the proposed MSS
approach in Sect. 4 where comparisons with approaches
in [4] and [5] are made as well. Finally, conclusive re-
marks are made in Sect. 5.
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2. Grey Filtering Based on GM(1,1) Model

In this section, a brief review of GM(1,1) model is given
first and then the grey filtering approach to noise esti-
mation is described and demonstrated.

2.1 GM(1,1) Model

The GM(1,1) modeling process is described in the fol-
lowing. For details, one may consult [6]. Given data
sequence {z(k), for 1 < k < K}, a new data sequence
2V (k) is found by 1-AGO (first-order accumulated
generating operation) as

k
W (k) = Z.’L’(TL) (1)

n=1

for 1 < k < K, where V(1) = z(1). To be effective in
GM(1,1) modeling, z(k) needs to meet two conditions:
(i) data is of same sign, and (ii) the ratio between ad-
jacent data in z(k) should be less than 10. From (1),
it is obvious that the original data z(k) can be easily
recovered from z(!) (k) as

z(k) = x(l)(k) - x(l)(k - 1) (2)

for 2 < k < K. This operation is called 1-IAGO (first-
order inverse accumulated generating operation).

By sequences z(k) and z(M(k), a grey difference
equation is formed as

z(k) +azV (k) =b (3)
where
2V (k) = 052 (k) + 2D (k — 1)) (4)

for 2 < k < K, and parameters ¢ and b are called de-
veloping coefficient and grey input, respectively. From
(3), parameters @ and b can be obtained as

[ ) } =(B"B) 'BTy (5)
where
—zM(2) 1
B_ _Z(T)(3> 1 )
(K 1
and
2(2)
2(3)
y=| . ™)
£(K)

Basically, the difference equation in (3) is attempted to
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approximate differential equation in the GM(1,1) mod-
eling. Therefore, to find the solution of z(V)(k) in (3),
we utilize its associated differential equation, which has
the following form

dz()

+azV = b (8)

[t can be easily shown that the solution for 2(V)(¢) in
(8) is

b
sV (1) = cem 4+ 2 9)
a

where ¢, by the initial condition 2™ (ty) = z(t), can
be found as

c= (:L‘(t(]) - b) et (10)

a

Therefore, the solution for (M) () is given as

b b
e V() = (a(ty) — = | emolt=to) 4 2 11
) = (i) - 2 ) emet-t 2 (1)
Letting to = 1 and t = k, we have the solution of (1) (k)
as follows.

b b
dMk) = (2(1) = = Jemotb-1 4 2 12
(k) = (o(1) - 2) et 4 2 (12)
where parameters a and b are found in (5). By 1-TAGO,
the estimate of z(k), Z(k), is obtained as

i(k) = 2W (k) - 2M(k - 1) (13)

where (1) = z(1(1) = 2(1). The estimation error for
x(k) is given as

e(k) = z(k) — @(k) (14)

which will be used to estimate additive noise later in
Sect. 2.2.

To sum up, the GM(1,1) modeling process consists
of three steps. First, find parameter a and b by (5).
Second, use (12) to estimate 2(Y) (k). Finally, find &(k)
through (13). It should be noticed that the minimum
number of data samples in GM(1,1) modeling is as few
as four samples, i.e. K = 4.

2.2 Grey Filtering and Noise Estimation

The proposed grey filtering approach based on GM(1,1)
model is described here. Assume the available noisy
signal x(k) satisfies Conditions (i) and (ii) in Sect. 2.1
and has the additive signal model z(k) = s(k) + n(k)
where s(k) and n(k) are the clean signal and the ad-
ditive noise in x(k), respectively. Then denote a seg-
ment of noisy signal as {x(k), for 1 < k < L} where
L =1+ Ny(K — 1) is the total number of samples.
Notation K is the number of samples used in GM(1,1)
modeling and Ny = |L/(K —1)] is the number of sub-
sets with one sample overlapped. The proposed grey
filtering approach is given as follows.
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Fig.1 One sample overlapped subsets for grey filtering.

Step 1: Divide {z(k), for 1 <k < L} into N, subsets
as {z;(k), for 1 < i < Ngs}. The way to divide z(k)
into subsets for the case K = 4 is depicted in Fig. 1
where the square indicates the sample overlapped.

Step 2: For each subset 4, find estimate of z;(k), &:(k),
by GM(1,1) model as stated in Sect. 2.1. Then con-
sider Z;(k) as an estimate of s;(k), 8;(k). That is,
#;(k) = 4;(k). Note that &;(k) # 8;(k) and there-
fore additive noise n;(k) is not equal to estimation
error of GM(1,1) model, e;(k) = z:(k) — &i(k) =
x;(k) — 8;(k), in general.

Step 3: Since ¢;(k) # n;(k) but related to n;(k), ad-
ditive noise n;(k) is estimated as 7;(k) = ae;(k)
where @ > 0 is a user-defined scaling parameter
and is determined by experiences.

Step 4: Estimate mean u of additive noise n(k) as

1+i(K—1)

Nss

":>
=>
S

—
ol
~—
—
—_
t
N

[( -1)
i=1 k=2+(i-1)(K 1)
Since z;(k) is of one sample overlapped, thus only
A(1) = 0 is excluded in (15).
Step 5: Estimate standard deviation o of n(k) as

. 1
7T\ NL(K )

Ngs 1+i(K—1)

DINNDYD

i=1 k=2+(i—1)(K—1)

1/2
(72i(k) — /7')2)

(16)

To demonstrate that the proposed grey filtering
approach is able to estimate additive noise through es-
timation error of GM(1,1) model, four examples are
given in the following.

Ezample 1. constant signal without additive noise

The data sequence used here is {z(k), for 1 < k < 4}
and z(k) = 5 for all k. To fit in the additive signal
model, z(k) is expressed as z(k) = z(k) + n(k) where
s(k) = 5 and n(k) = 0. By GM(1,1) model, the es-
timated sequence Z(k) = §(k) is {5, 5, 5, 5}. Since
#(1) = z(1), it is excluded in noise estimation. The es-
timated noise (k) is obtained as {7(2), 7(3), n(3)} =
{0, 0, 0} where o = 1.0. In this case, the scaling factor
« has no effect on noise estimation. That is, it can be
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any appropriate positive number. This example indi-
cates that z(k) without additive noise can be estimated
by GM(1,1) model precisely.

Ezample 2. random exzponential signal without additive
noise

A random signal is generated by the following equation:
z(k) = Ae ™7 4+ n(k) (17)

for 1 < k < 4, where A and 7 have uniform probability
density functions (pdf) which varies from 2 to 3, and 10
to 20, respectively. The noise n(k) is set to be zero on
purpose. By (17), a sequence with four data samples is
generated as {2.4372, 2.2786, 2.1303, 1. 9916}. With
a = 1.0, the estimated noise f(k) through GM(1,1)
model is obtained as {8.309 x 1074 7.228 x 107,
6.252 x 10~*} which is approximately zero. Thcrefore,
the random exponential signal can be estimated appro-
priately by GM(1,1) model.

Example 3. constant signal with additive noise

To illustrate that additive noise causes estimation error
in GM(1,1) model, additive noise is put into account in
Example 1. Here, the noise n(k) is of Gaussian pdf
with mean p = 0 and standard deviation o = 0.5. By
z(k) = s(k)+n(k), 1,000 patterns are generated, where
each pattern has 20 samples. By the proposed grey
filtering approach with K = 4 and a = 1.0, the esti-
mated mean i = 0.0021 and estimated standard devi-
ation & = 0.2914 for the Gaussian additive noise n(k).
Obviously, the standard deviation o of n(k) is under
estimated while mean p is estimated appropriately. To
estimate o more accurate, after several trials the scal-
ing factor a = 1.75 is determined. Then 10 experiments
are performed under the same conditions as given previ-
ously. The average of jt and & are 0.00376 and 0.50562,
respectively. Tt is clear that statistics of n(k) can be
well estimated with the scaling factor a = 1.75.

Ezample 4. random signal with additive notse

In this example, 1,000 patterns are generated by (17)
for 1 < k < 20, where A and 7 have uniform pdf which
varies from 2 to 3, and 10 to 20, respectively. The noise
n(k) is of Gaussian pdf with g = 0 and o = 0.1. With
K = 4 and o = 1.0, the noise statistics are estimated
as 1 = 7.4 x 107 4 and & = 0.0583, respectively. Again,
the standard deviation of n(k) is under estimated. As
before, the scaling factor « is set as 1.75 for better
noise estimation. With o = 1.75, 10 experiments are
performed. The averages of i and & are 0.0013 and
0.10138, respectively. Obviously, the estimation accu-
racy has been significantly improved.
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3. Application of Grey Filtering to Speech
Enhancement

In this section, the motivations for this paper are given
in Sect.3.1. Then the proposed spectral subtraction
approach for speech enhancement, which is based on
grey filtering, is described in Sect. 3.2.

3.1 Motivations

This paper is motivated by the following observations.
As shown in Sect. 2.2, the estimation error of GM(1,1)
model is zero or approximately zero when additive noise
is absent and non-zero when additive noise is included.
This is true both for constant and random exponen-
tial signal. This implies that the estimation error of
GM(1,1) model can be related to additive noise. As
demonstrated in Sect.2.2, statistics of additive noise
can be estimated accurately with an appropriate scaling
factor . Next, a clean speech signal generally consists
of non-speech and speech portions. The non-speech
portion can be considered as constant signal while the
speech portion as random signal. Consequently, there is
a hope that the estimation error of GM(1,1) model for
clean speech is approximate to zero and non-zero when
noisy speech is present. Moreover, there is no need to
determine speech and non-speech portion as in [2] since
both constant and random signals can be estimated ap-
propriately and the GM(1,1) modeling requires as few
as four data samples. To demonstrate the idea just
described, the clean speech b.wav (male speech of let-
ter “b”) obtained from [8] is provided as an example
which is shown in Fig. 2 (a). Since b.wav is within the
range (—1,1), it fails to meet the requirement of Con-
dition (i) in Sect.2.1. To make it satisfied, b.wav is
level-shifted by 5 before it is put into GM(1,1) model-

T . . . .
1+ i
05
—
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-
, . , . \
0 2000 4000 6000 8000 10000 12000
(a)
T . —
1
05 1
0 v~—v~—~——qum i fpomme oo e
-05 J
-1 -
‘ ‘ . . . .
0 2000 4000 6000 8000 10000 12000
(b)
Fig.2 (a) Clean speech b.wav. (b) Estimate of b.wav by

GM(1,1) model.
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ing. Condition (ii) is met in speech signal since adjacent
samples does not change abruptly in general. The es-
timate of b.wav obtained from GM(1,1) model is given
in Fig.2 (b) where K = 4. Obviously, the estimate of
b.wav by GM(1,1) model retains b.wav appropriately.
Note that the standard deviation o of additive
noise n(k) can be estimated accurately by grey filtering
and that a spectral subtraction approach for speech en-
hancement depends heavily on the accuracy of the stan-
dard deviation of n(k). An MSS [7] approach based on
grey filtering is proposed in this paper. The proposed
approach is described in the following subsection.

3.2 The MSS Approach Based on Grey Filtering

Assume that the additive signal model is appropriate
for the noisy speech and that the noisy speech signal
is stored in the wave file format whose range is within
(—=1,1). The diagram block for the proposed magnitude
spectral subtraction (MSS) approach based on grey fil-
tering is depicted in Fig. 3. Given a noisy speech signal
To(k) = s,(k) + no(k), the implementation steps are
described in the following where additive noise n,(k) is
assumed known and the length of x,(k) is assumed as
a multiple of L.

Step 1: Shift up the level of z,(k) by an appropriate
constant C, z,(k) «— x,(k) + C, such that Condi-
tion (i) is met.

Step 2: Divide z,(k) into M non-overlapped segments
of length L and denote x(k) as speech segment of
length L. Then Steps 3 to 9 are performed for each
speech segment z(k).

Step 3: With rectangular window, obtain X(f) =
FET{z(k)} = S(f) + N(f) where FFT1{-} de-
notes as L-point fast Fourier transform (FFT).

Step 4: Estimate additive noise n(k) as n(k) by the
grey filtering approach described in Sect. 2.2.

Step 5: Perform L-point FFT on 7(k) to find the mag-
nitude of N(f), |[N(f)|, where n(1) = n(2) is used.

Step 6: Estimate the standard deviation of |N(f)],
ME

Step 7: Perform MSS [7] as

» D= X(f)| - By py. D >0
511 | P 1D

(18)

where |S(f)| is an estimate of [S(f)] and 3 is a
user-defined scaling factor determined by experi-
ences.

Step 8: Tind estimate of s(k) as (k) = IFFT . {|S(f)|
eI L XD} where IFFT{-} is the inverse of L-point
FFT and ZX(f) is the angle obtained by perform-
ing FFTr{-} on noisy speech segment z(k).

Step 9: Shift down the level of §(k) by the constant
C.
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Fig.3 The block diagram for the proposed MSS approach.

Step 10: Concatenate M segments §(k) to find esti-
mate of s,(k), 8o(k).

Step 11: Obtain residual noise n,.(k) = 8,(k) — so(k).

Step 12: Calculate input, output, and improvement
signal to mnoise ratios, SNR;,, SNR,., and
SNR;mp, as follows:

AIxL Q(k)
S’VR,T, =10 IOg ‘MX—L—(]{‘—) (19)
MXxL ~2
85(k)
S]\/let =10 10g —Wi— (20)
2(1
k=1 nr(k)
S]VRimp - SNRout - SJ’VRTR (21)

There are at least three advantages in the proposed
MSS approach. First, the mechanism to determine non-
speech and speech portions as in [2] is not required.
Second, there is no need to trade bandwidth and mem-
ory capacity, such as higher sampling rate in [4] and
zero insertion in [5], for noise estimation. Third, in
the proposed MSS approach no re-sampling scheme is
needed as in [4] and no synchronization is required as
in [5].

4. Simulation Results, Discussions, and Com-
parisons

In this section, the proposed MSS approach for speech
enhancement described in Sect. 3.2 is justified. Two ex-
amples are provided in Sect.4.1 to investigate the per-
formance of the proposed approach. Then discussions
on simulation results are given in Sect.4.2. Finally,
the proposed MSS approach is compared with high fre-
quency region based (HFR-based) approach in [4] and
zero-padding (ZP) approach in [5] in Sect. 4.3.

4.1 Simulation Results

By using MATLAB, the proposed MSS approach de-
picted in Fig.3 is programmed. Two examples are
given in the simulation. In the first example, speech
file f0125s.wav in [8] is used which is a female oral

s
3
E
£ 300
g
2 200
100
0 e A\ DY S S0 PR n !
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 (Hz)
(b)
Fig.4 (a) Clean speech. (b) Clean spectrum (f0125s.wav).

reading the sentence “We were away a year ago.” For
more details, one may consult in the Appendix 4 of
[8]. The sampling rate for f0125s.wav is 10 KHz and
the length of samples is 21,000. In the simulation,
the speech file f0125s.wav is level-shifted by 5, ie.,
C = 5 and the segment length is set to 1,000. That
is, L = 1,000 and therefore the number of segments
M = 21,000/1,000 = 21. The number of samples used
in GM(1,1) modeling is 4, i.e., K = 4. And the scal-
ing factor 3 =5 in (18) is used In the additive signal
model z,(k) = so(k) +n,(k), the file {0125s.wav shown
in Fig.4(a) is considered as clean speech s,(k) whose
spectrum is given in Fig.4 (b), and the additive noise
no(k) is artificially generated. Two types of additive
noise are generated. One is Gaussian noise and the
other is uniform noise. The Gaussian noise is gener-
ated with zero mean and a specified standard deviation
o. With different o, the SNR;,,, SNRout, and SNR;pmyp
for each case are given in Fig. 5. The noisy speech and
enhanced speech for the Gaussian case with o = 0.05
are shown in Figs.6(a) and 6 (b), respectively. The
corresponding spectra for noisy speech and enhanced
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Fig.7  (a) Noisy spectrum (o = 0.05). (b) Enhanced spectrum
(f0125s.wav).
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(b) Fig.8 SNR;,, SNRyy:. and SNR;mp, for uniform noise with

Fig.6 (a) Noisy speech (¢ = 0.05). (b) Enhanced speech different  (f0125s.wav).

(f0125s.wav).

speech are given in Figs.7(a) and 7 (b), respectively.
As a second type of additive noise, the uniform noise
is distributed within the range v(—0.5, 0.5) where v
is a scaling factor. The SNR;,,, SNR,,;. and SNR iy,
for several values of « are depicted in Fig. 8. The noisy
speech z,(k) and the enhanced speech So(k) for v = 0.4
are, respectively, shown in Figs.9(a) and 9 (b) whose
corresponding spectra are given in Fig. 10.

The second example used in the simulation is the
speech file f0101s.wav in [8] which is a female speech
counting from one to ten. The clean speech and spec- 0
trum of f0101s.wav are shown in Fig. 11. The sampling 05
rate is 10 KHz and the length of samples is 98,000. In
the simulation, parameters ¢ = 5, L =1,000, M = 98,
B =5, and K = 4. The speech and its spectrum
contaminated by Gaussian noise with ¢ = 0.1 and
the enhanced speech are given in Fig.12. The spec- Fig.9  (a) Noisy speech (y = 0.4). (b) Enhanced speech
tra corresponding to Fig. 12 are showed in Fig. 13. The (f0125s.wav).
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Fig.10 (a) Noisy spectrum (y = 0.4). (b) Enhanced spectrum
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Fig.12 (a) Noisy speech (o = 0.1). (b) Enhanced speech

(f0101s.wav).
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Fig.13 (a) Noisy spectrum (o = 0.1). (b) Enhanced spectrum
(f0101s.wav).
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Fig.14 SNRj,, SNRout, and SNR;mp, for Gaussian noise
with different o (f0101s.wav).

SNR;n, SNRui, and SNR;,, for different o are plotted
in Fig. 14. Figure 15 summarizes the SNR;,, SNRout,
and SNR;,, for uniform noise with different . The
noisy speech and enhanced speech, with their corre-
sponding spectra, for the case of v = 0.4 are depicted
in Figs. 16 and 17, respectively.

4.2 Discussions

The simulation results, shown in Figs.5, 8, 14, and
15, indicate that the proposed MSS approach improves
SNR in different degrees except the case with Gaussian
noise of o = 0.05 in Fig.5. To investigate the case, en-
ergies of s,(k), no(k), 30(k), and n,.(k) are calculated
and their values are 1,121.40, 52.60, 923.99, and 47.00,
respectively. The energy loss for the speech component
is 1,121.40 — 923.99 = 197.41 while the energy of noise
is suppressed by 52.60—47.00 = 5.60. This implies that
the proposed approach to remove the portion of energy
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in s,(k) is more than that in n,(k) for the case. There-
fore, SNR;, is higher than SNR,,;. Though SNR;,,
is negative, the speech shown in Fig. 6 (b) has better
speech quality. That is, the noisy speech in Fig. 6 (a)
is enhanced and thus the objective of speech enhance-
ment is achieved by the proposed MSS approach even
it is of little degradation in SNR.

The second observation from simulation results in
Figs. 5, 8, 14, and 15 is that the proposed MSS approach
has better results for uniform noise than that for Gaus-
sian noise. In other words, for similar SNR,,,, SN Rimp
for uniform cases are higher than that for Gaussian
cases. This is true both for files f0125s.wav. and
f0101s.wav. For example, compare the case ¢ = 0.35
in Fig.5 with the case v = 0.6 in Fig.8. The SNR;,
are —3.60dB and —3.50 dB, respectively. However, the
SNR iy, for the case v = 0.6 is higher than the case
o = 0.35 by 4.24dB. This suggests that the proposed
MSS approach is favorable to uniform additive noise.

Finally, note that the SNR, for the Gaussian
case of o = 0.05 in Fig. 14 is positive instead of negative
as in Fig. 5. One possible reason for this is that the ma-
Jor portion of f0125s.wav is speech while the portions
of non-speech and speech in f0101s.wav are approxi-
mately equal. It implies that the energy in f0101s.wav
Is less than that in {0125s.wav. In other words, for a
given amount of additive noise SNR;,, in f0101s.wav is
less than that in f0125s.wav. This can be verified from
Figs.5 and 8, or Figs. 14 and 15. Consequently, the
portion of energy loss resulted from the proposed MSS
approach in f0101s.wav is less than that in f0125s.wav
in general. This may explain why the SNR;y,p is posi-
tive for the Gaussian case of o = 0.05 in Fig. 14.

4.3  Comparison with HFR-Based and ZP Approaches

In this subsection, the performance of proposed MSS
approach is compared with HFR-based approach in [4]
and ZP approach in [5] in terms of SNR;,,p, and sub-
jective listening quality, respectively.

4.3.1 Objective Comparison Results

The simulation for HFR-based approach is described
here. First, both speech files f0125s.wav and f0101s.wav
are re-sampled where the new sampling rate is 30 KHz.
Then additive noise is generated and re-sampled with
sampling rate 30 KHz. Next, the following steps are im-
plemented: (i) Divide noisy speech with new sampling
rate into non-overlapped segments of length L = 1,000
as in the proposed MSS approach. (ii) For each noisy
speech segment perform L-point FFT with rectangu-
lar window. (iii) Calculate the mean of magnitudes in
the range from 10 KHz to 15KHz. (iv) Perform MSS
by subtracting the mean obtained in Step (iii) from
the magnitude found in Step (ii). (v) Perform L-point
IFF'T, with the estimated angles obtained in Step (ii),
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to reconstruct speech segment. (vi) Concatenate recon-
structed speech segments which is then down sampled
by a factor of 3. (vii) Calculate SNRimp as in (21)
where the speech and additive noise before re-sampling
are used to find SNR;,. By the steps just described,
three cases of SNR;,, —5dB, 0dB, and 5dB, are con-
sidered in the simulation. The resulted SNRim;p of
speech files f0125s.wav and f0101s.wav, for Gaussian
and uniform additive noises, are shown in Figs. 18, 19
and Figs. 20, 21, respectively.

As for the ZP approach, the simulation is per-
formed as follows: First, zero samples are inserted be-
tween samples in f0125s.wav and f010ls.wav, respec-
tively. Then additive noise is generated and added to
zero-padded speech to form noisy speech, which is of
twice length of the original speech. Next, the follow-
ing steps are performed: (i) Divide noise speech into
segments of length L = 1,000 as in the proposed MSS
approach. (ii) Estimate additive noise by the samples
where zero samples are inserted. (iii) For each noisy
speech segment perform L-point FFT with rectangular
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window. (iv) Transform the estimated noise by L-point
FFT and calculate the mean of magnitudes. (v) Per-
form MSS by subtracting the mean obtained in Step
(iv) from the magnitude found in Step (iii). (iv) Per-
form L-point IFFT, with the estimated angles obtained
in Step (iii), to reconstruct speech segment. (vi) Con-
catenate reconstructed speech segments and discard the
samples where zero padding is operated. (vii) Calcu-
late SNR;p as in (21) where the original speech and
additive noise added to the original speech are used to
find SNR;,. By setting SNR;, to —5dB, 0dB, and
5dB, the simulation results of SNR;m,, for speech files
f0125s.wav and f0101s.wav, both for Gaussian and uni-
form additive noises cases, are depicted in Figs. 18, 19
and Figs. 20, 21, respectively.

The comparison results for the proposed MSS ap-
proach, HFR-based approach, and ZP approach are
shown from Fig. 18 to Fig.21 where the proposed ap-
proach is denoted as GF-based approach. On average,
the proposed approach is inferior to HFR-based ap-
proach in SNR ., by 0.6770dB for file f0125s.wav while
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0.0557 dB superior for file f0101s.wav. When compared
with ZP approach, the proposed approach is inferior,
on average, by 1.9208dB in SNR;pm,, for file 10125s. wav
and 1.9719dB inferior for file {0101s.wav. To sum up,
the proposed MSS approach is slightly better than the
HEFR-based approach for file f0101s.wav and a little bit
worse for file f0125s.wav in terms of SNR;mp. As com-
pared with ZP approach, the proposed approach is infe-
rior by approximately 1.95dB in SNR;,, for both files.
However, it should be noted that both HFR-based and
ZP approaches require increase in transmission band-
width. Twice the original bandwidth is demanded in
ZP approach and three times in HFR-based in the simu-
lation. On the other hand, the proposed MSS approach
use available noisy speech as it is without re-sampling or
zero insertion. Therefore, to some extend it can be said
that HFR-based and ZP approaches trade bandwidth
for better objective performance. Besides, the receiver
requires to be synchronized with the transmitter for
better performance in ZP approach. Consequently, it
Is an appropriate choice to use the proposed MSS ap-
proach instead of HFR-based or ZP approaches when
bandwidth increase is not possible in the application of
interest,.

4.3.2  Subjective Comparison Results

It is known that better SNR, an objective assessment,
does not mean better listening quality in general. Thus,
in this subsection, the subjective listening quality is
compared for the proposed approach, HFR-based ap-
proach, and ZP approach. As in [4], the quality of test
speech is divided into five levels: (i) very good, (ii)
good, (iii) normal, (iv) bad, and (v) very bad. The five
levels are then scored as follows: 5 to level (i), 4 to level
(ii), 3 to level (iii), 2 to level (iv), and 1 to level (v). For
files f0125s.wav and f0101s.wav, three cases of SNR;,,
—5dB, 0dB, and 5dB, are considered in the listening
test. Twelve persons with normal hearing ability are
involved to give the score for each approach where addi-
tive noise is Gaussian or uniform. The scores for differ-
ent cases are then averaged, respectively. The means of
scores for different SNR;, and additive noise are shown
in Figs. 22 and 23 for file f0125s.wav and Figs. 24 and 25
for file f0101s.wav. Interesting enough, all test results
indicate that the proposed MSS approach has better
subjective listening quality even though its SNR;py is
worse than HFR-based and ZP approaches in most of
cases as shown in the previous subsection. This inter-
esting issue can be investigated through Eq. (20). In
(20), the residual noise n, (k) attempts to indicate the
residual of additive noise. However, it is not an appro-
priate indication to the residual of additive noise when
an over-subtraction happens in MSS. For example, as-
sume the maximum magnitude in additive noise is ).
Then a value greater than X is used in MSS to subtract
from the magnitude of noisy spectrum. It is obvious

531

B GF-based
a5 HER-b@ased [---eoooerm
CJzr
A ]
BB e ]

Mean of Scores

0
SNRin

Fig.22  Listening test results for Gaussian noise (f0125s.wav).

o

sy
o
’Dgﬂ
515
D
O

ES

@
w o

Mean of Scores
n
o

2
15
1
0s
0
0
SNFin
Fig. 23 Listening test results for uniform noise (f0125s.wav).
J— ;
Wl GF-based
45 HFR-based
[ —
Py S
IR

w

Mean of Scores
n
o

N

0

SNRIn

Fig. 24  Listening test results for Gaussian noise (f0101s.wav).

that all additive noise is removed but n,.(k) # 0. In
this case, n,(k) is related to the signal loss instead of
additive noise since all additive noise has been removed.
In general, an over-subtraction in MSS results in musi-
cal noise [7], which is a tin-like sound, in the enhanced
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speech. On the other hand, n,(k) is generally related to
the residual of additive noise when an over-subtraction
is not the case in MSS. In this case, n,(k) results in an-
noying sound of additive noise in the enhanced speech
in general. To justify the idea described above, the case
of SNR;, = 0dB in f0101s.wav with uniform additive
noise is given as an example. First, energies of s,(k)
and no(k) are calculated and their values are 1,227.30
and 1,242.10, respectively. Then the energies of §,(k)
and n,.(k) in the proposed MSS approach, HFR-based
approach, and ZP approach are found separately. En-
ergies of §,(k) and n, (k) are 880.18 and 106.26 in the
proposed approach, 1,130.00 and 132.05 in HFR-based
approach, and 1,110.30 and 78.72 in ZP approach, re-
spectively. For the proposed MSS approach, the energy
of §,(k) is far less than that in s,(k). It implies that an
over-subtraction is taken place quite possibly and there-
fore n, (k) is related to the signal loss instead of additive
noise in general. The over-subtraction is verified in the
listening test where musical noise is heard as expected.
As for HFR-based and ZP approaches, the energy of
8o(k) is close to so(k). Consequently, n,.(k) reflects the
residual of additive noise since an over-subtraction in
MSS may not happen and an annoying sound of ad-
ditive noise could be heard in the listening test. As
expected, the enhanced speech obtained in HFR-based
or ZP approach reveals an annoying sound of additive
noise in the listening test. For other cases in Figs.18
to 21, we have similar results. That is, in the proposed
MSS approach a tin-like sound of musical noise can be
heard in the enhanced speech and an annoying sound
of additive noise heard both in HFR-based and ZP ap-
proaches. Since people have less complaint on musi-
cal noise when compared with additive noise, thus the
proposed MSS approach has better subjective listen-
ing quality than HFR-based and ZP approaches. Be-
sides, the listening test results suggest that all three ap-
proaches are favorable to uniform additive noise. This
can be justified in Figs. 18 to 21.
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5. Conclusive Remarks

In this paper, a grey filtering approach based on
GM(1,1) model is proposed. Then the proposed grey
filtering approach is applied to speech enhancement
whose noise removal technique is MSS. This paper
is motivated by the following observations. For con-
stant signal and random signal, GM(1,1) model has
zero or approximately zero estimation error when ad-
ditive noise is absent and non-zero when additive noise
is present. Therefore, the estimation error of GM(1,1)
model is related to additive noise in the proposed grey
filtering approach. This idea is verified by several ex-
amples. The simulation results show that the proposed
grey filtering is able to estimate additive noise appro-
priately. Next, note that the speech signal generally
consists of non-speech and speech portions. The non-
speech portion can be considered as constant signal
while speech portion as random signal. Thus, an MSS-
based speech enhancement approach based on grey fil-
tering is proposed. Then the proposed MSS approach
is justified by two examples where Gaussian noise and
uniform noise are considered. The simulation results
indicate that the proposed MSS approach works well
for both cases and is favorable to case of uniform noise.
Besides, the proposed MSS approach is compared with
HFR-based approach in [4] and ZP approach in [5] in
terms of SNR;,, and subjective listening quality. The
simulation results show that the proposed MSS ap-
proach has worse performance in SNR;pmp than HFR-
based and ZP approaches in most of cases. However,
the proposed MSS approach has better subjective lis-
tening quality than HFR-based and ZP approaches.
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